

Enabling Materials for Aerospace Applications

Mia Siochi

NASA Langley Research Center

TeXpo October 26, 2007

Advanced Materials and Processing Research Thrusts

emilie.j.siochi@nasa.gov

Track Record of Innovation

Licensed to diverse industries:

- Aerospace
- Medical
- Electronics
- Cosmetics
- Utilities
- Sports/Recreation

R&D 100 Winners Since 1996

Alloys

2001/Polyimide Foam

2005/PETI-330 High **Temperature Transfer Molding Resin**

Advanced Aluminum Alloys & Fabrication Near Net Shape Fabrication Processes

Processes

- Near-Net-Extrusion
- Roll Forging
- Shear Forming
- Spin Forming
- Friction Stir Welding

Applications

- Cryotank Barrel Sections
- Adapter Rings
- Cryotank Domes
- Intertank & Other Dry Bay Structures

Electron Beam Freeform Fabrication (EBF3) at NASA LaRC

<u>Ground-Based System for Aircraft Structural</u> <u>Components</u>

- Layer-additive process for structural metal parts
- ~100% dense, direct from CAD file without molds, tooling, or machining offers cost & lead-time reduction
- Material properties similar to those of annealed wrought products

Portable System for Space Applications

- First successful microgravity demos February 2006
- Microgravity tests support fabrication, assembly & repair of space structures
- Portable system also suitable for self-supportability needs, such as on-demand fabrication of tools and replacement parts

High Temperature Polymers and Adhesives

Advanced Composites Processing

Hybrid Laminates

Double Vacuum Bag VARTM

Foams for Extreme Conditions

- Minimizes ice formation
- Flexible at cryogenic temps
- Minimal weight (0.04 lb)

Flame retardant foam compositions

Metal Decorated Nanotubes

upling Modeling with Experiments to Aid Nanocomposite Design

Schematic of Proposed Donor-Acceptor Interactions

Observed Differences in Nanocomposite Solution Stability

LaRC Electroactive Materials

Material	Out-of- plane Strain	Electric field	Young's Modulus
PVDF	0.1%	50 MV/m	1600 MPa
SWNT/Polyimide	2.6%	0.8 MV/m	3500 MPa
Polyurethane	11%	100 MV/m	17 MPa
PZT	0.1%	1 MV/m	62 GPa

emilie.j.siochi@nasa.gov

Micro and Nano Fibrous Mats

30 Layer Aligned Mats

PGA 30 Layer mat: top image at 2000x; bottom image at 25x

CP2 30 Layer mat: top image at 1000x; bottom image at 100x

Biocompatible Power Generation and Energy Storage

Device Concept

Fully biocompatible, using proteins naturally found in the body
Tailorable, by choice of redox couple
Controllable architectures

MSSE Materials International Space Station Experiment

Accelerating Pace of Emerging Technology Insertion

Contacts

National Aeronautics and Space Administration

Dr. Emilie "Mia" Siochi

Acting Branch Head Advanced Materials and Processing Branch

NASA Langley Research Center Mail Stop 226 Bldg. 1293A Rm. 219B Hampton, Virginia 23681

Office: (757) 864-4279 Fax: (757) 864-8312 Emilie.J.Siochi@nasa.gov National Aeronautics and Space Administration

Rheal Turcotte

Advanced Planning and Partnership Office

NASA Langley Research Center Mail Stop 200 Bldg. 1268A Rm. 1119 Hampton, Virginia 23681

Office: (757) 864-8881 Fax: (757) 864-8320 Rheal.P.Turcotte@nasa.gov

If you have further questions today, please see a New Business Team member (look for a Bright Yellow badge) or visit the booth on How To Do Business With Langley